The economic returns or ending the AIDS epidemic by 2030: a full income approach

E. Lamontagne, M. Over, J. Stover, W. McGreevey, JA. Izazola

9th International AIDS Economic Network pre conference
Durban, 15 – 16 July 2016
Introduction

- Within the SDGs, the world has pledged to end the AIDS epidemic as a public health threat by 2030.

- Last month, UN General Assembly adopted the Political Declaration to end AIDS which contains clear fast-track targets

- Investments needed: from USD 19bn (2014) to USD 26.2bn (2020)

- What are the economic benefits of such an investment? Is ending AIDS a “good deal”?
Two scenarios for two different futures

- **New infections, Fast-Track**
- **New infections, Constant Coverage**
- **AIDS-related deaths, constant coverage**
- **AIDS-related deaths, Fast-Track**
The full income approach

• Builds on the work from Lancet Commission on Global Health 2035 (Jamison et al, 2013)

• Growth in terms of full income = sum of income growth measured in the national income accounts, plus the value of the change in mortality (or life expectancy) during the same period.
Full income, what it is, what it is not

\[
\nu(e_{2000}, e_{2011}) = \$506
\]
\[
y_{2000} = \$2,576
\]
\[
(e_{2011} - e_{2000}) = 2.9 \text{years}
\]

If assume change in LE is perpetual i.e. \(\nu(e_i, e_j, y)\) occurs every year

=> need discount rate to translate future value into present value, \(r\)

Considering that PV of a perpetual stream of value \(x\) at discount rate \(r\) equal \(x/r\)

Let’s consider a GDP growth of 2.5% in Sub Saharan Africa**

The full income approach predicts that 2 percentage points of this growth are due to improvements in health

Table A.3.10 from Jamison et al* (truncated)

<table>
<thead>
<tr>
<th></th>
<th>Annual value of change in mortality associated with 1y increase in LE (% of GDP) (V(e_i, e_j, y) / (e_j - e_i))</th>
<th>Value or 1-year increase in LE, VLY (as a multiple of GDPpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(r=3%) (r=7%)</td>
</tr>
<tr>
<td>LMIC</td>
<td>6.8%</td>
<td>2.3</td>
</tr>
<tr>
<td>Sub Saharan Africa</td>
<td>12.6%</td>
<td>4.2</td>
</tr>
<tr>
<td>HIC</td>
<td>4.3%</td>
<td>1.4</td>
</tr>
</tbody>
</table>

* : Jamison et al, Lancet Commission on Global Health 2035, 2013, appendix III, table A.10

** : World Bank, Global Economic Prospect, June 2016
Applying the full income approach to ending AIDS by 2030

- Cost: Incremental costs of Fast track compared to our benchmark constant scenario
- Constant scenario can benefit of improvement in efficiency and lower unit costs encountered in FT, or not
- Cost associated to benefits witnessed in 2030 = \(\sum_{2016}^{2030} cost_t \)

- Benefit: value of change in mortality in 2030
- Discounted stream of future mortality reductions
- Value of a statistical life (VSL) = 180 * GDPpc
Benefits: Discounted stream of future mortality reductions

Reduction in mortality (in SMU) =

$$\Delta SMU_{t}^{FT-CC} r = \sum_{2016}^{2030} (SMU_{t}^{FT-CC} - SMU_{t-1}^{FT-CC}) r$$

Where

$$SMU_{t}^{FT-CC} = (\text{reduc mort}_{t}^{FT-CC} / \text{pop}_{t}) \cdot 10^4$$
Applying the full income approach to ending AIDS by 2030

<table>
<thead>
<tr>
<th>All low- and middle-income countries, 2016-2030</th>
<th>Incremental gains between Fast-Track and Constant scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If improvement in efficiency and unit costs applies to both scenarios</td>
</tr>
<tr>
<td></td>
<td>2030</td>
</tr>
<tr>
<td>1 Population, billions</td>
<td>6.76</td>
</tr>
<tr>
<td>2 per capita income</td>
<td>3,444</td>
</tr>
<tr>
<td>Incremental expenditures (USD billions)</td>
<td>60.95</td>
</tr>
<tr>
<td>Incremental expenditures per capita (USD)</td>
<td>9.02</td>
</tr>
<tr>
<td>Present value of incremental future costs per capita</td>
<td></td>
</tr>
<tr>
<td>Reduction in mortality (in SMU) in 2030 =</td>
<td></td>
</tr>
<tr>
<td>$\sum_{2016}^{2030} (SMU_{t}^{FT-CC} - SMU_{t-1}^{FT-CC}) r$</td>
<td>1.06</td>
</tr>
<tr>
<td>Where $SMU_{t}^{FT-CC} = (\text{reduc mort}{t}^{FT-CC} / \text{pop}{t}) \times 10^4$</td>
<td></td>
</tr>
<tr>
<td>VSMU = (180 GDPpc) $10^{-4} $</td>
<td>0.018</td>
</tr>
<tr>
<td>Value of mortality reduction per capita (rows 2 x 5 x 6)</td>
<td>65.87</td>
</tr>
<tr>
<td>Benefit-cost calculations</td>
<td></td>
</tr>
<tr>
<td>Benefit: cost ratio (row 7 ÷ row 3)</td>
<td>7.30</td>
</tr>
</tbody>
</table>

Source: authors calculations
All values are in USD (real, 2015). R =3%, value of a standardised life year = 180 GDPpc as per Jamison et al (2013)
Economic returns of ending AIDS by 2030 full income approach

Incremental benefit and cost of the Fast-Track scenario under the full income approach

Source: Authors calculations
real USD, discounted (r=3%); Value of a SMU = 1.80% GDPpc; Income elasticity of a SMU = 1

Above this line, benefits exceed costs
Economic returns of ending AIDS by 2030 per additional dollar, per income level

- Benefits are proportionately higher as the income level of the countries increases.
- MoF of middle-income countries should find it attractive to invest domestic resources to end AIDS.
- High relevance for international community to support poorest countries where returns on investment of domestic resources, although positive, are lower.
Conclusion

- The full income approach enables to reflect the effects of HIV programmes in terms of income growth plus the value of the change in mortality (or life expectancy).

- The economic returns of Ending AIDS by 2030 for all LMIC is between US$ 7.3 and US$ 11.6 dollars of benefit for US$ 1 of additional expenditure.

- Investment of domestic resources is particularly attractive for Ministers of Finance of middle-income countries.

- The positive but smaller returns in low-income countries brings a rationale for sustained international support to end AIDS in these particular countries.

Questions: lamontagnee@unaids.org
Appendix
Full income approach
Methods (1/2)

\[V(e_i, e_j, y) : \text{is a annual value of changing life expectancy from } e_i \text{ years to } e_j \text{ years when income is } y \]

\[V(e_i, e_j, y) = \int_0^\infty n(a) \, VSMU(a) \, \Delta SMU(e_i, e_j) \, da \]

(1)

Where

\[VSMU(a) = \frac{e_a}{e_{35}} \, [VSMU(35)] \]

(2)

\[VSMU(35) = 180 \times GDP_{pc} \times 10^{-4} \]

(3)

Equation 1 becomes

\[V(e_i, e_j, y) = 0.018 \, y \int_0^\infty n(a) \, \frac{e_a}{e_{35}} \, \Delta SMU(e_i, e_j) \, da \]

(4)

Where the Lancet Commission uses:

- \(VSMU(35) = VSL \times 10^{-4} \). Jamison et al (2013) use \(VSL = 180 \times GDP \)
- \(n(a) \) = density of the age distribution of a country’s population (from UN WPP)
- \(\Delta SMU(e_i, e_j) \) = annual mortality rate from Japan for different L. E
- \(\frac{e_a}{e_{35}} \) = data on SMU adjusted for age (a) from Human Mortality Database
Methods (2/2)

\[V(e_i, e_j, y) : \text{is an annual value of changing life expectancy from } e_i \text{ years to } e_j \text{ years when income is } y \]

assuming this change in life expectancy is permanent (i.e. the reduction in mortality occurs year after year). We can then use discount rate \((r)\) to get the present value of this permanent change in L.E.

Standardising to get the value of a 1-year gain in life expectancy (or VLY) by dividing by the difference between the two LE, we find:

\[
VLY = r^{-1} V(e_i, e_j, y) / (e_j - e_i) \quad (5)
\]

Setting aside the current year gives:

\[
VLY = \frac{vly}{r} \quad (6)
\]